
Reference Architectures for Trustworthy

Energy Management, Desktop Grid

Computing Applications, and Ubiquitous

Display Environments

Gerrit Anders1, Jan-Philipp Steghöfer1, Lukas

Klejnowski3, Michael Wissner2,

Stephan Hammer2, Florian Siefert1,

Hella Seebach1, Yvonne Bernard3,

Wolfgang Reif1, Elisabeth André2,

Christian Müller-Schloer3

1 Institut für Software & Systems Engineering

Universität Augsburg
2 Institut für Informatik, Universität Augsburg

3 Institut für Systems Engineering � SRA

Leibniz Universität Hannover

Report 2013-05 April 2013

Institut für Informatik

D-86135 Augsburg



Copyright © Gerrit Anders, Jan-Philipp Steghöfer, Lukas Klejnowski,
Michael Wissner, Stephan Hammer, Florian Siefert,
Hella Seebach, Wolfgang Reif, Elisabeth André
Institut für Informatik
Universität Augsburg
D�86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg.DE
� all rights reserved �



Reference Architectures for Trustworthy Energy

Management, Desktop Grid Computing

Applications, and Ubiquitous Display

Environments∗

Gerrit Anders, Jan-Philipp Steghöfer, Florian Siefert,

Hella Seebach, Wolfgang Reif

Institute for Software & Systems Engineering

Augsburg University, Germany

E-Mail: {anders, steghoefer, siefert, seebach, reif}@informatik.uni-augsburg.de

Michael Wissner, Stephan Hammer, Elisabeth André

Institute of Computer Science

Augsburg University, Germany

E-Mail: {wissner, hammer, andre}@informatik.uni-augsburg.de

Lukas Klejnowski, Yvonne Bernard, Christian Müller-Schloer

Institute for Systems Engineering � SRA

Leibniz Universität Hannover, Germany

E-Mail: {klejnowski, bernard, cms}@sra.uni-hannover.de

Abstract

This report presents three reference architectures that can be used as
architectural blueprints for applications of three di�erent system classes.
The �rst system class comprises applications in the �eld of energy man-
agement; the second one contains applications in the domain of desktop
grid computing; the third system class contains multi-user multi-display
applications. Because applications in the scope of energy management
are safety-critical and desktop grid computing applications have to cope
with a variety of self-interested participants, applications of these domains
have in common that they can increase their robustness and e�ciency by
considering the trustworthiness of participants. Multi-user multi-display
applications have to assess the social relationships between its users and
adapt based on trustworthiness facets such as transparency and control-
lability. Therefore, the reference architectures given here are based on a
multi-agent system that provides functionality for the utilization of trust.
Experiences with participants can be stored and evaluated so that trust
can be derived and incorporated into the applications. Additionally, the
platform provides the basis for open systems in which agents enter and
leave dynamically.

∗This paper is a revision and extension of [1]



1 Introduction

Reference architectures are a tool to facilitate the construction of applications
of a speci�c class by guiding the development of an appropriate architecture.
In this report, we present three reference architectures, each based on a domain
model of the system class they can be employed in. We understand a system
class as a more narrow term than the more general �domain� and denote with it
a class of systems that serve the same purpose and work under similar assump-
tions. The domain model captures the abstract concepts of a speci�c system
class as well as their interdependencies. These concepts are then grouped in
components and interfaces between them are de�ned to yield reference archi-
tectures that provide a more abstract view on the system classes.

The �rst reference architecture serves as a template for architectures for
trustworthy applications in the �eld of energy management, whereas the second
one can be used in the system class of desktop grid computing applications.
Finally, we propose a reference architecture for multi-user multi-display appli-
cations.

A characteristic of applications of these system classes is that they are open,
heterogeneous systems that either have to ensure safety or provide high perfor-
mance in spite of untrustworthy, self-interested participants. Our approach to
deal with such situations is to make use of the knowledge of the trustworthi-
ness of participants in order to increase the systems' robustness and e�ciency.
Trust, as we understand it, is a multi-faceted concept consisting of the facets
functional correctness, safety, security, reliability, credibility, and usability [17].
For example, we de�ne reliability as the quality of a system with respect to
its availability under disturbances or partial failure and credibility as the belief
that a participant interacts in a desirable manner. Important properties of trust
are that it is of temporary nature and that it allows to measure a participant's
con�dence in its interaction partners by evaluating experiences made with these
participants in previous interactions. Trust thus enables cooperation in systems
with various participants.

All three domain models have in common that they are composed of three
layers: the lowest layer shows relevant concepts of a target platform in the
form of a multi-agent system (MAS) that provides basic agent abstractions,
handles communication, and o�ers an infrastructure for the utilization of trust
mechanisms. The middle layer presents system-class-speci�c concepts and their
interdependencies founded on the concepts de�ned by the target platform. On
top, the application layer speci�es the concepts of one or more applications
based on the platform's concepts. The reference architectures themselves group
the concepts of the middle layer in components and suggest interfaces between
them. Components are assigned to nodes that can represent physical hardware.
The actual deployment of software components to hardware is, however, highly
speci�c to the requirements of the actual system and the assignment should thus
only be regarded as a suggestion.

Our notation includes the stereotypes use and creates. The former implies
that a class uses another class' functionality for certain purposes without an
explicit association between them. It is introduced to denote how important
functions of a class are delegated to other classes. The latter indicates that a
class serves as a factory for instances of another class. In the text, a typewriter
font indicates a concept while italic font indicates a component.

4



In Sect. 2, we brie�y introduce the MAS that is used as the implementation
basis that is depicted in the domain models. Subsequently, we propose the ref-
erence architecture for trustworthy energy management systems in Sect. 3. The
architecture for trustworthy desktop grid computing applications is presented in
Sect. 4 and the architecture for multi-user multi-display applications is detailed
in Sect. 5. Sect. 6 concludes this report.

2 A Trust-Enabling Multi-Agent System

All presented reference architectures are based on the Trust-Enabling Multi-
Agent System (TEMAS) [2]. It provides common concepts and functionality
that are useful to all three reference architectures and the respective applications
based on them. For this reason, the lowest layer of the domain models is denoted
as TEMAS layer in the following.

The TEMAS is a MAS for open environments. While it is based on the
Trust-Enabling Middleware (TEM) [9], which itself is based on the adaptive,
organic middleware OCµ [13] that features self-x properties such as self-healing
and self-optimization, it incorporates an infrastructure that provides a variety
of MAS concepts. Apart from facilities for communication in local and dis-
tributed environments and a yellow pages service, it allows itself and the agents
to use application-speci�c metrics to derive trust values for di�erent facets from
prior experiences with the Trust Metric Infrastructure provided by the TEM.
In addition to the possibility to derive trust values, the TEM allows to store
experiences in persistent data bases, query reputation values (i.e., trust values
that originate from experiences of other system participants), and assess the
reliability of agents and devices out of the box. In the TEMAS, agents run on
nodes, a form of container similar to those used in peer-to-peer networks. They
often represent physical devices and can host several agents or reactive services.
To enable fast reaction in case of malfunctioning nodes, agents can register with
a so-called Node Availability Service. It monitors the availability of nodes by
analyzing communication between services [8] and informs registered agents in
case a node goes o�-line.

The TEMAS provides MAS-speci�c concepts the TEM does not provide on
its own. These concepts are consolidated in the MASConcepts4TEM . The
MASConcepts4TEM extend the TEM primarily by Agents and TrustAgents,
additional trust concepts such as TrustBasedScenarios, and basic time con-
cepts. With respect to the TEM, it further serves as a facade because it hides
the complexity of the underlying infrastructure consisting of nodes and services
and dependent interfaces from higher level applications. This results, e.g., in
simpler, more common, and natural interfaces for messaging and the application
of trust in MAS.

Because of these functionalities, the TEMAS is an ideal basis for the con-
struction of trustworthy MAS. In the following, we present three architectures
based on this MAS. While the TEMAS is useful as a basis for systems that
require the use of trust values and features such as automatic evaluation of an
agent's reliability, other MAS that provide similar functionality can be used as
well. For more information on the TEMAS and the Trust Metric Infrastructure,
we refer to [2].

5



3 An Architecture for Trustworthy Energy Man-

agement Applications

In this section, we present a domain model that de�nes basic concepts for a
system class in the domain of energy production and consumption as well as
a reference architecture based on these concepts. Both models can serve as a
template for the system class of applications that are based on power consumers,
power producers, and a power grid to which producers and consumers are con-
nected. We call this reference architecture the Trusted Energy Grid (TEG).

Applications in the �eld of energy production and consumption have several
properties in common. First, they are usually large-scale systems since there
are many power consumers and producers involved. Second, they are safety-
and mission-critical systems due to the fact that a failure within the system
could injure people or cause harm to its physical infrastructure. Third, they
are heterogeneous, open systems since participating components are made by
di�erent manufacturers and their behavior is hard to predict. The TEG, as a
reference architecture for various kinds of applications, has to deal with these
properties, too. For example, applications on top of the TEG could coordinate
and manage the electrical storage provided by the batteries of electric vehicles,
as investigated in [5], or group controllable consumers in order to sell load reduc-
tion to electricity suppliers [15]. Furthermore, as shown in Sect. 3.3, another
application's task might be to maintain safety by permanently balancing en-
ergy consumption and production in the face of a vastly increasing number of
intermittent, unpredictable, and uncontrollable participants.

To be able to cope with uncertainty in power networks, the TEG must pro-
vide tools to regard trust of participants and of information they make available
to the system. Since the TEMAS provides trust mechanisms and functionality
out of the box, we present the Trusted Energy Grid as a platform-speci�c model
based on this MAS.

In the following, we show the characteristic concepts of the system class
described by the TEG (see Sect. 3.1) as well as the concepts of the TEMAS
that are useful in this context (see Sect. 3.2). Subsequently, we give an example
of an application that utilizes the concepts introduced (see Sect. 3.3) before we
introduce the reference architecture in Sect. 3.4.

3.1 TEG: System-Class-Speci�c Concepts

As a reference architecture for energy management applications, the TEG's
main concepts are power consumers (GenericPowerConsumer) and power plants
(GenericPowerPlant), both based on GenericPowerProsumer as depicted in
Figure 1. They are all connected to the power grid (PowerGrid), which is mod-
eled by an entity called TransmissionAgent that is responsible for determining
the power line frequency by comparing energy production and consumption and
can be specialized to, e.g., take transmission-speci�c details of the grid into ac-
count (e.g., the energy lost in long distance transmission). A power consumer
can be any kind of energy consuming entity such as an electrical device, a house-
hold, a large or industrial consumer, or an entire supply area.

Power plants feed energy into the power grid. Usually, a di�erentiation
between controllable (ControllablePowerPlant) and stochastic power plants

6



Figure 1: The Trusted Energy Grid Domain Model

(StochasticPowerPlant) is made. Controllable power plants are power plants
whose output can be determined and scheduled in advance as is the case with
nuclear, hydro, or coal power plants. The output of a controllable power
plant is adjusted according to a schedule (Schedule) that states how much
power should be generated at which point in time. In contrast, stochastic
power plants are intermittent power plants whose output is rather unpredictable
since it depends on consumer attitude or natural phenomena. Examples are
domestic combined heat and power units or weather-dependent power plants
(WeatherDependentPowerPlant), such as solar power plants and wind turbines.

Power consumers come in two �avors as well: ControllablePowerConsumers
can be regulated with schedules, while StochasticPowerConsumers can not be
controlled and request demand when needed.

Weather stations (WeatherStation) monitor the current weather condi-
tions (WeatherCondition), such as solar radiation and wind speed, and create
weather forecasts (WeatherForecast) based on these measurements. All pro-
sumers can make predictions of their future output (PowerPrediction). Since
the output of weather-dependent producers depends on current weather con-
ditions, the PowerPrediction's of WeatherDependentPowerPlants depend on
weather forecasts.

Prosumers, the power grid, as well as weather stations are embedded in an
Environment that, among other things, provides a geographical location for
each agent.

7



Additionally, both power plants and consumers are able to participate in the
energy market (PowerMarket) where they can sell and buy energy at auctions.
Moreover, the power market is an abstract concept that serves as an interface
to enable interactions between di�erent applications running in parallel on the
TEG. For realistic scenarios, the PowerMarket can, e.g., be implemented based
on the model of the European Energy Exchange [16].

Finally, di�erent trust metrics are used in the system, each with its own pur-
pose: The PrognosisMatchMetric allows to derive a trust value based on the
quality of the power predictions of a prosumer. The deviation from the sched-
ule of a controllable prosumer is captured by the ScheduleViolationMetric

while the adherence to contracts made on the power market is measured by the
MarketContractViolationMetric.

3.2 TEG: TEMAS Layer

In the TEG, prosumers, the transmission agent, weather stations, and the power
market exhibit reactive and proactive behavior. Furthermore, these concepts
are heavily dependent on the capability to communicate information to other
entities in the system. Consequently, each of these concepts is realized as an
Agent in the platform-speci�c model presented here, thus inheriting, among
other things, the ability to show anticipatory, self-initiated behavior and to
exchange information via messages (MessageTransport).

As presented in Sect. 2, the TEMAS estimates the reliability of nodes and
services by monitoring the availability of nodes. For the TEG, the knowledge
about the reliability of prosumers is very important because a safety-critical
system should be able to take preventive measures to maintain safety and to
ensure proper operation in spite of unexpectedly unavailable resources. In the
TEG, almost all Agents represent physical components whose availability should
be coupled to the availability of their physical counterpart. For example, if a
physical power plant goes o�-line, the agent that represents this power plant
should also be unavailable so that its reliability decreases. However, since the
TEMAS currently measures the availability for each node and not for every
single agent, each Agent that represents a physical component should run on
its own node1. Hence, whenever a physical component fails, the corresponding
node goes o�-line. Such a distribution is depicted in the component diagram in
Figure 2.

Additionally, to store experiences from which trust can be derived, the
TEG makes use of the TrustMetricInfrastructure provided by the TEMAS.
The transformation and interpretation of this information into a trust value
is done with the help of application-speci�c metrics that adhere to the inter-
face de�ned by an abstract trust metric (TrustMetric). For example, the
ReliabilityMetric can be used to determine the reliability of services. To
enable proactive scheduling, trust-based scenarios [3] (TrustBasedScenarios)
that use the values derived by the trust metrics to calculate di�erent possible
futures of the system and their respective probabilities can also be employed.
All Agents that, in one way or another, use the TrustMetricInfrastructure

are specializations of TrustAgent.

1The TEMAS will support monitoring the availability of agents and services independent
of the availability of underlying nodes in future releases.

8



3.3 TEG: An Exemplary Application Layer

In this section, we demonstrate an example application based on the TEG that
we call Autonomous Virtual Power Plants (AVPPs) [4].

In the power grid, one of the major challenges is to balance energy production
and demand despite uncertainty introduced by a �uctuating energy demand
and a steadily increasing number of uncontrollable, intermittent power plants
whose future output is di�cult to predict and very volatile. That is because
the output of such power plants depends on the availability of natural resources
like wind or sunlight, or on consumer behavior as is the case with domestic
combined heat and power (CHP) units. AVPPs are an approach to tackle
this problematic situation. Their objective is to hold energy production and
consumption in balance at all times in order to maintain safety and to guarantee
proper operation of the power grid despite a tremendously increasing number
of stochastic power plants.

One of the central ideas of this application is to partition the power plant
landscape into several groups of power plants called, as the application itself,
AVPPs. Each AVPP consist of various controllable power plants that require a
schedule as well as uncontrollable ones. A major advantage of partitioning the
power plant landscape with AVPPs is that the complexity of creating schedules,
which is an optimization problem with a large search space, is greatly reduced.
More precisely, we de�ne an AVPP (see AVPP in Figure 1) as a self-organizing,
self-adapting, and self-optimizing ensemble of di�erent power plants. Here, self-
organization means that AVPPs autonomously �nd a suitable structure that
supports the system's goal, i.e., balancing energy production and demand. If the
structure is not suitable any more, e.g., because one or more AVPPs repeatedly
cannot cope with the load situation, power plants restructure themselves into
new AVPPs. Moreover, an AVPP self-adapts because it autonomously reacts
to changes in energy production and consumption by dynamically adjusting
schedules of controllable power plants in order to maintain the balance.

As mentioned above, AVPPs consist of di�erent types of power plants, which
extend the basic concepts provided by the reference architecture. This can be
deterministic power plants, such as biofuel, hydro, or nuclear power plants; but
also weather-dependent producers, such as solar power plants, wind turbines or
wind farms, as well as other stochastic power plants like domestic CHP units.
However, these types of power plants are not speci�c to the application and are
therefore not depicted in Figure 1.

In order to enable proactive measures to ensure stable operation, prosumers
predict their future load or consumption (PowerPrediction). For consumption,
this data is based on information about their former energy consumption. A
producer's prediction depends, among other things, on the power plant's state
and historic data. Predictions further depend on the weather forecast provided
by weather stations in case of weather-dependent power plants, on consumer
attitude in case of usage-dependent power plants, or on a deterministic power
plant's schedule and performance characteristics.

To handle the uncertainty introduced by inaccurate predictions and unreli-
able power plants, AVPPs use additional information about the trustworthiness
of power plants and consumers. The trustworthiness of a power plant is char-
acterized by its reliability and credibility. Its reliability is measured by the
TEMAS and thus states how often the power plant was o�-line. The credibility

9



of a power plant indicates the accuracy of its predicted power outputs. Further-
more, the trustworthiness of a consumer is its credibility in terms of the accuracy
of its predicted load and is therefore de�ned analogously to the credibility of
power plants. The information about predicted and actual load or power out-
put is stored by making use of the TEMAS's TrustMetricInfrastructure. A
prognosis match metric (PrognosisMatchMetric) can then be used to derive
credibility from this information once actual values are available by comparing
predicted values with actual ones.

The application makes use of the knowledge about the trustworthiness of
power plants in several aspects. On the one hand, it is used in the course
of AVPP formation. The objective of the AVPP formation is to form several
AVPPs of similar quality because a single AVPP that cannot cope with a given
situation could endanger the proper operation of the whole system. There-
fore, the formation of AVPPs tries to increase robustness by grouping trust-
worthy and untrustworthy power plants together so that every AVPP exhibits
almost the same mix with respect to the trustworthiness of power plants. On
the other hand, an AVPP bene�ts from knowledge about the trustworthiness
of power plants and consumers when creating schedules. That is because an
AVPP creates schedules in such a way that it reduces dependence on untrust-
worthy, deterministic power plants by decreasing their scheduled output. This
is reasonable since untrustworthy power plants can cause imbalances between
energy production and consumption due to inaccurate predictions or malfunc-
tions. Furthermore, an AVPP makes sure to hold su�cient reserve power to be
able to cope with unexpected situations caused by untrustworthy power plants
or consumers.

In addition, in order to be noti�ed when a power plant goes o�-line, an
AVPP registers with the TEMAS's NodeAvailabilityService. In such a case,
the AVPP triggers the recalculation of schedules.

3.4 TEG: Components and Interactions

The classes of the TEG domain model can be grouped into several components
as shown in Figure 2. This modularization fosters separation of concern as well
as high cohesion in the independent parts of the system. Each component can
be exchanged with one that o�ers similar functionality as long as the inter-
face is implemented. In applications based on the TEG, di�erent scheduling
mechanisms or prediction algorithms can, e.g., be used and easily swapped at
design time or even at runtime. Please note that the assignment of components
to nodes in the diagram is merely a suggestion. Depending on the system re-
quirements, trusted hardware located with the utilities can, e.g., house several
prosumer agents that communicate with the physical prosumer over existing
interfaces.

Weather stations, the power market, and the power grid control are all dis-
tinct nodes that can either be distributed or centralized. Weather stations, e.g.,
can be modeled as agents, running TEMAS as well and interacting with the
prosumers directly. The power market will often be centralized, especially when
prosumers are participating in a market such as the European Energy Exchange.
When using a trust-aware market that adapts prices and market access based
on the trust value of the market participants, a trust-management component
is necessary.

10



Figure 2: Components of a Trusted Energy Grid

A physical prosumer runs the TEMAS and is usually either a StochasticPro-
sumer or a ControllableProsumer. In all cases, the agents use trust values to de-
termine the quality of their and others' prognoses, their adherence to schedules,
and their adherence to market contracts, making use of the Trust Management
component. A Controllable Prosumer makes use of a Scheduling component
that allows it to create optimized schedules according to its parameters and
internal model.

To show the interaction with an actual application, Figure 2 includes an Au-
tonomousVirtualPowerPlant component, modeling the application described in
Section 3.3. Each physical prosumer can take on the role of an AVPP. An AVPP
controls other prosumers or AVPPs and schedules them accordingly, incorpo-
rating the trust values gathered by the Trust Management component to adapt
the schedules accordingly. An AVPP can also participate in the PowerMarket.

A system based on the TEG consists of a number of prosumers as well as one
or more weather stations, power grid control, and, optionally, a power market.
While it can not be assumed that all prosumers are based on the TEMAS in an
open system, there will be interfaces that allow the interaction of prosumers.

11



Such interfaces will also be available for weather stations and other external
elements of the system so that an execution environment is not assumed for
them in Figure 2.

Having described the TEG and an example based on the concepts, in the
next section, we present a reference architecture for desktop grid computing
applications.

4 An Architecture for Trustworthy Desktop Grid

Computing Applications

This section introduces the Trusted Computing Grid (TCG) reference architec-
ture for the system class of desktop grid computing applications. These are
applications that are executed in an environment, called desktop grid system,
that consists of a great number of computers that cooperatively process com-
putationally intensive tasks produced by clients, i.e., instances of desktop grid
applications. However, as we focus on desktop grid computing, these applica-
tions do not run on dedicated servers, but on user devices, such as personal
computers. Desktop grid systems have in common that they are based on open,
distributed systems without central control (e.g., the Internet) in which several
heterogeneous clients act on behalf of users and cooperate in order to reach a
goal. For this reason, these applications feature a highly dynamic structure.
Furthermore, since desktop grid applications run on user devices, they have
to share resources with other applications, such as other desktop grid applica-
tions. In addition, it can not be assumed that all devices are part of a common
administrative domain.

In desktop grid systems, clients create work units that are expected to be
processed by the grid. For this purpose, each client can act in the role of a
submitter or of a worker. In the role of a submitter, a client submits work units
to the grid that should be processed by another client in the role of a worker.
Having processed a work unit, a worker returns the result to the submitter.

By being able to delegate work to other clients, the advantage of grid com-
puting is that it provides a way to decrease computing time. Therefore, a user
of such a grid usually expects correct results as fast as possible. However, there
may be clients that plan to exploit or damage the system. For example, these
are clients that do not contribute to the grid as they do not process work units,
clients that return wrong results or no results at all, as well as others that �ood
the grid with work units. Thus, since each client may behave uncooperatively,
the big challenge of desktop grid computing is to have e�cient, robust systems
in spite of uncertainty introduced by their clients.

As a reference architecture for desktop grid computing applications, the
TCG [7] provides concepts to master this challenge. Since clients work together
to process work units, each client has to decide which client should process a
work unit and whether or not to process a work unit on behalf of another client.
Summarized, a client has to �nd suitable interaction partners. Furthermore, to
deal with uncooperative, i.e., untrustworthy, clients, we propose the utilization
of the TEMAS's trust mechanisms and functionality.

The next sections give an insight into the TCG's system-class-speci�c con-
cepts (see Sect. 4.1) as well as relevant concepts of the TEMAS (see Sect. 4.2).

12



An example application is shown in Sect. 4.3 and the reference architecture is
introduced in Sect. 4.4.

4.1 TCG: System-Class-Speci�c Concepts

Systems based on the TCG reference architecture (see Figure 3) consist of mul-
tiple interacting agents (TCGAgent), each representing a client. These agents
participate in the grid in the role of a worker and a submitter in order to pro-
cess data. Since we regard desktop grid computing applications, the user of
a TCG application (TCGUser) activates, deactivates, con�gures, and constrains
the TCGAgent. For example, the user states how many resources (Resource)
may be allocated. As a result, a TCGAgent usually cannot use all resources
provided by a given system.

Each agent can run multiple applications (TCGApplication) on the generic
architecture provided by the TCG, such as an application for video encoding
or face recognition. Applications create jobs (TCGJob) that are computationally
intensive tasks that are expected to be performed by the grid. For example, a job
is the task to search for speci�c people in a number of pictures. Having created
a new job, it is split into smaller pieces, called work units (TCGWorkUnit), in
an application-speci�c way by making use of an instantiation of TCGSplitter.
Subsequently, the agent that created the job manages the distribution of work
units to other agents, thus acting as a submitter. In this role, an agent is
self-interested and therefore always tries to maximize its speedup by choosing
suitable workers that process its work reliably and correctly.

The selection of a suitable interaction partner is delegated to an appropri-
ate strategy. The SubmitterStrategy is responsible for selecting interaction
partners when the agent is submitting work units in an e�ort to get a job
done. For this purpose, it can evaluate the trustworthiness of other agents
by making use of a trust metric (AggregatedTrustMetric) that aggregates an
agent's credibility calculated by credibility metrics for direct trust or reputa-
tion (CredibilityMetric, CredibilityReputationMetric) as well as relia-
bility (ReliabilityMetric, ReliabilityReputationMetric) measured by the
TEMAS. For example, an agent's credibility can be in�uenced by the accuracy
of its computational results. Whenever an agent receives a request for process-
ing a work unit, the WorkerStrategy decides whether the request should be
accepted or rejected. This decision can also be based on trust values, e.g., the
trust value of the submitter, as well as on other criteria such as the current
work load. By utilizing the submitter's credibility here, an incentive mecha-
nism is installed that enforces cooperation between the agents. Accepted work
units can be processed by the workers's corresponding application with a spe-
cialization of TCGProcessingAlgorithm. Having �nished the processing of a
work unit, the worker returns the result (TCGWorkUnitResult) to the submitter
which combines the results from all agents that processed a work unit by using
an application-speci�c TCGCombiner.

Both SubmitterStrategy and WorkerStrategy can be de�ned by the user.
Additionally, they can incorporate learning mechanisms or other facilities to
adapt themselves to a changing environment. This way it is possible, e.g., to let
agents behave strategically in order to secure good standing with other agents
before a big job has to be distributed or minimize the own e�orts if no jobs are
queued.

13



Figure 3: The Trusted Computing Grid Domain Model

4.2 TCG: TEMAS Layer

As explained in the previous section, TCGAgents show anticipatory behavior and
must be able to communicate. For this reason, TCGAgents are specializations
of TrustedAgent allowing them to use the MessageTransport facilities. In
order to be noti�ed when an agent becomes unavailable (e.g., in a situation
in which a user shuts down the computer), TCGAgents can register with the
NodeAvailabilityService provided by the TEMAS.

The TEMAS's TrustMetricInfrastructure can be used by agents to store
experiences with their interaction partners. To evaluate an agent's trustworthi-
ness based on these experiences, the TCG proposes to combine reliability and
credibility of agents to an aggregated representation of an agent's trustworthi-
ness. For this purpose, it utilizes the AggregatedTrustMetric that aggregates
the results of the TrustMetrics for credibility de�ned in the TCG and for re-
liability de�ned in the TEMAS. All these metrics adhere to the interface and
functionality de�ned by the TEMAS's TrustMetric.

The following section presents an application that makes use of the concepts
de�ned by the TCG reference architecture.

4.3 TCG: An Exemplary Application Layer

In this section, we present a desktop grid computing application for face recog-
nition that adheres to and concretizes the basic concepts introduced by the
TCG reference architecture. In this application, a job (see FRJob in Figure 3) is
to identify persons by using a face recognition algorithm applied to photos. A
typical job contains multiple photos and description models of several faces to
be recognized. Correspondingly, a typical work unit (FRWorkUnit) contains one

14



or more of these photos and the description model of a speci�c face. The face
recognition application (FRApplication) states how to create FRJobs on the one
hand, and how to process FRWorkUnits by supplying a suitable algorithm for
the task on the other hand. The FRSplitter splits FRJobs into FRWorkUnits.
Work units are processed by the FRProcessingAlgorithm and the correspond-
ing FRWorkUnitResult are combined by the FRCombiner and returned to the
application afterwards.

As stated before, applications in the �eld of desktop grid computing have in
common that they have to deal with uncooperative clients. For this reason, and
because the functionality for the distribution and acceptance of work units can
be de�ned in a generic way, we model the TCGAgent as a trust-aware, adaptive
agent that makes decisions with respect to the trustworthiness of other agents.
Note that the TCG makes metrics for determining the credibility and reliability
of agents available in a generic way.

When a new work unit is ready to be processed, the TCGAgent chooses a
suitable interaction partner with regard to its direct trust in and the reputation
of potential interaction partners as well as other criteria, such as current work
load. For this purpose, an agent's trustworthiness is appraised with the help
of the AggregatedTrustMetric. Once an interaction is completed, an agent
gains experience with its interaction partner which is stored with the help of
the TrustMetricInfrastructure. An interaction is completed if a work unit
is rejected, processed and returned to the submitter, or if a timeout occurs. To
determine whether an interaction has a positive or negative outcome, TCGAgents
evaluate the interaction partner's behavior in the course of the interaction, e.g.,
by checking the correctness of the result or by resolving whether or not the
rejection of a work unit was justi�ed. Each experience in�uences the trust
in an interaction partner. For example, if an agent returns faulty results, its
credibility decreases.

As agents prefer trustworthy interaction partners, they create implicit orga-
nizations that build upon these trust relations. These organizations are called
Implicit Trusted Communities [18]. A Trusted Community is a dynamic orga-
nization of agents that mutually trust each other. They are implicit because
agents do not know any of the existing Trusted Communities. By choosing trust-
worthy interaction partners, each agent's performance as well as the system's
e�ciency and robustness increases. If an agent notices that no other agent is
willing to cooperate, it can assume that it has been excluded from all Implicit
Trusted Communities. In this case, it can adapt its strategy in order to become
trustworthy and a member again. For example, an egoistic agent could decide
to become more altruistic in order to increase its trustworthiness.

4.4 TCG: Components and Interactions

The classes of the TCG domain model can be grouped into several components
as shown in Fig. 4. This modularization fosters separation of concern as well
as high cohesion in the independent parts of the system. Each component can
be exchanged with one that o�ers similar functionality as long as the interface
is implemented. In Trusted Desktop Grids, this becomes especially important
as di�erent applications can use the same TCGAgent to submit and work on
tasks.

15



Figure 4: Components of a Trusted Computing Grid

The TCGAgent encapsulates the generic functionality of each agent that
participates in the Trusted Desktop Grid. It represents its user in the system
through the User Management component that manages the user's preferences
w.r.t. the use of resources and strategies. The component Submitter deals with
the selection of workers when a new job has to be submitted to the system. It
employs a strategy chosen by the user or learned by the agent over the course
of its interaction with the system. The component Worker deals with work
units submitted to the agent based on a worker strategy, again either chosen
by the user or learned by the agent. In addition, the agent component provides
communication means for the composing components, thus de�ning the types
of interactions between the agents.

On top of this generic agent are the di�erent applications that create jobs
and have the algorithms to process work units. The Application component has
a Job Management component that splits TCGJobs into TCGWorkUnits and is
able to recombine them. In addition, it houses a component for the processing
of TCGJobs that encapsulates the TCGProcessingAlgorithm.

Both the TCGAgent and the Application are deployed in a TEMAS execu-
tion environment and usually run on a Desktop Computer. The TCG consists
of a large number of TCGAgents running on many desktop PCs and interacting
with each other through the TEMAS communication facilities. In some cases,
it can be useful to access an external trust management system such as a repu-
tation manager. The Reputation Manager can either be deployed on one of the
desktop PCs or on a separate server.

16



5 An Architecture for Trusted Display Grid Ap-

plications

This section introduces the Trusted Display Grid (TDG) reference architecture.
Ubiquitous Display Environments usually consist of one or more large displays
in a public place (such as an university, a shopping mall, an airport, or a train
station) as well as the mobile displays of the users interacting with them. Apart
from simply reading various informations (such as weather, news, or schedules)
o� the public display, users can also interact with the public display with their
mobile displays, taking interesting data with them, leaving it behind for other
users, or somehow in�uence the way current information is displayed.

According to [14], the highly adaptive nature of such systems (changing the
displayed content, the layout, the used modality, accommodating for other users
as they approach, etc.) is not always understandable and self-explanatory for
users. If they cannot follow the rationale behind a system adaptation or think
that adaptation is un�tting for the current situation, their trust can be impaired,
which, in the worst case, can cause them to stop interacting with the system.
In addition, the authors of [12] have found that users are concerned with their
privacy and the protection of their data when interacting with these systems.

Based on our previous work on managing user trust in Ubiquitous Display
Environments [6], the TDG is a reference architecture for such highly adaptive
systems which aim at managing their users' trust with regard to the challenges
presented above. This includes means (such as sensors) to discern a user's cur-
rent situation, identify threats to the user's trust and �nally system adaptations
to mitigate these threats.

Since the TDG involves various devices (such as servers, sensors, public dis-
plays, and mobile displays) and relies on their proper functionality and accuracy,
as well as their ability to reliably communicate with each other, employing the
TEMAS is advised, as it o�ers the necessary features to ensure this. As a mobile
version of the TEMAS is currently in the prototype stage, all devices can be
integrated this way.

In the next sections, we will show the concepts speci�c to the system class of
TDG applications (see Sect. 5.1) and how those concepts can be integrated into
the TEMAS (see Sect. 5.2). Finally, we will give an example of a TDG applica-
tion employing the introduced concepts (see Sect. 5.3) as well as a component
overview of TDG systems (see Sect. 5.4).

5.1 TDG: System-Class-Speci�c Concepts

One of the central concepts for TDGs (see Figure 5) are multiple displays
(Display) that are part of such environments. They include public displays
(PublicDisplay) as well as private displays (PrivateDisplay), like for exam-
ple smartphones or tablet PCs, that are controlled by the users (User). The ca-
pabilities of the displays, such as their methods of input, their screen size and res-
olution, and other technical aspects are described by the CapabilityProfile.
This information is used by the layout manager (LayoutManager) to create
GUI layouts (GuiLayout) (using the factory pattern) that arrange GUI ele-
ments (GuiElement) in such a way that the layout works well on the di�erent
displays. Furthermore, the concept GuiLayout is used as the view element in

17



Figure 5: The Trusted Display Grid Domain Model

a Model-View-Controller-Pattern. The Content concept provides the model
while the ContentObserver in conjunction with the ContentManager and the
LayoutManager provide the controller part.

The model element of the MVC-pattern is the users' content (Content)

that is displayed in speci�c GUI elements (ContentElement). Each content is
associated with metadata (Metadata) that describe, for example, if the content
contains private data (PrivacyInformation).

The control instance is divided into the management of content in non-trust-
relevant interactions, such as pressing a �next� button, and the proposal of sys-
tem actions (SystemAction) in trust-critical situations. The ContentObserver
is responsible for deciding which of the two cases have occurred and to delegate
the next step to the appropriate controller as shown in Figure 6.

In case no trust-critical user interaction occurred and no change in the
SocialContext was detected, the ContentObserver reacts to a user request
and calls the ContentManager that in turn retrieves the required content from
the application and provides it to the related display.

Otherwise, the UserTrustModel is activated and proposes system actions
to mitigate the trust-critical situation. To choose between the possible system
actions, the UserTrustModel uses di�erent kinds of ContextInformation that
describe the current situation. This context information includes the relations
between the present public and private displays (DisplayContext) and the cur-
rent social context (SocialContext). The social context contains information
about the presence of other persons (Person) or users, their proximity to a
display, and other relevant data such as the current noise level. If these persons

18



Figure 6: Based on information provided by the context, control is delegated to
either the ContentManager or the UserTrustModel.

are also registered users (User), the social context also provides information
about the relationships between the present users. Users can, e.g., be friends,
acquaintances, or strangers.

By knowing that displayed content contains a user's private data and that a
stranger is standing next to this user, the User Trust Model, could propose that
the privacy-critical data should be protected and, e.g., migrated to the user's
private display.

However, to recognize such situations, a TDG has to be equipped with
several sensors (Sensor). These sensors, for example, recognize present per-
sons (ProximitySensor), use video cameras (VideoSensor), or record ambient
noise (AudioSensor). The generated data (Data) are then processed by an
Interpreter that serves as the factory for ContextInformation. The latter
concept contains a high-level, semantically enriched situation description based
on the sensor data. The accuracy of the sensors is measured with a specialized
metric (SensorCredibilityMetric) that compares measurements of di�erent
sensors to detect deviations in the measured signal. This way, the credibility of
the data can be assessed and used accordingly in the decision process.

Once a system action has been determined or new content has been selected
for display, a new GuiLayout has to be calculated by the LayoutManager as de-
scribed above. The new layout is then propagated to the displays (see Figure 6).
Some system actions have no e�ect on the actual layout, e.g., if an existing con-
tent element has to be masked. In this case, only the content element update
is propagated to the displays.

19



5.2 TDG: TEMAS Layer

Each Display is a TrustedAgent and uses the communication facilities provided
by TEMAS's MessageTransport as well as the NodeAvailabilityService to
determine which displays are currently active in the system, thus providing data
for the DisplayContext.

The TDG environment uses di�erent TrustMetrics to determine the relia-
bility and accuracy of sensors. Since TDG applications usually rely on a variety
of sensors, individual sensor Data can be cross-referenced to determine which
sensors are most accurate in which situations. If, e.g., one of several micro-
phones used by the application to determine the presence of people reports
high noise levels without other microphones reporting similar data, the trust
value of the microphone can decrease and thus be considered less when data
is interpreted. Such an approach selects for the most accurate sensors and al-
lows adaptivity with regard to changing environmental conditions that in�uence
sensor accuracy.

5.3 TDG: An Exemplary Application Layer

In this section, we demonstrate an example application based on the TDG called
Friend Finder [11]. Friend Finder is an interactive campus map that is displayed
on PublicDisplays that are installed across a campus. It shows the current
location (PositionData collected by GPSSensors) as well as the names and the
pictures of the users' friends. A FriendFinderUser (see Figure 7) can browse
through the displayed friends and retrieve the directions to a selected friend.
The browsing and selection can be operated via the user's PrivateDisplay.

Since the friends' names, pictures, and locations are considered privacy-
critical data [10], a privacy protection mechanism is integrated into the Friend
Finder application. This mechanism, called UserTrustModel, is able to decide
which SystemActions should be executed to protect the user's private data and
thus to obtain the user's trust in the system. In the Friend Finder application,
the �ve provided FriendFinderSystemActions are:

1. Do Nothing: Private data remain on the display.

2. Minimize: Private data shrink in size, but remain on the display.

3. Mask: Private data are occluded with solid blinders.

4. Remove Private Part: Private data are completely removed from the
screen. The neutral elements, such as uniform icons (Friend Finder) re-
main on the public display.

5. Remove All: All data are removed. The screen displays only the map.

In case of actions 3-5 where the user's private Content is no longer visible
on the PublicDisplay, the Content migrates to the user's PrivateDisplay,
enabling the user to continue the interaction. Which Content is displayed on
which Display is managed by the FriendFinderContentManager.

To recognize privacy-critical situations, the application utilizes cameras to
recognize faces (FaceRecognitionSensors) and microphones to measure the
ambient noise (AudioSensors). The Data (FaceDetectionData, AudioData)

20



collected by these Sensors are analyzed by Interpreters to recognize possibly
approaching or already present other Persons by using the AudioInterpreter
or the FaceRecognitionInterpreter.

Figure 7: Excerpt from the class diagram of Friend Finder, an application based
on a Trusted Display Grid

5.4 TDG: Components and Interactions

The classes of the TDG domain model can be grouped into several components
as shown in Fig. 8. This modularization fosters separation of concern as well as
high cohesion in the independent parts of the system. Each component can be
exchanged with one that o�ers similar functionality as long as the interface is
implemented. This way, di�erent user trust models or di�erent sensors, among
others, can easily be deployed.

The Trust Management component contains the UserTrustModel (UTM)
and the SystemActions that can be proposed by the UTM. It interacts with
the displays from which it gathers CapabilityProfiles and Data, the Layout
Management component which enacts the system actions proposed by the UTM,
and the Interpreter Component which provides the ContextInformation that
is required as the input for the UTM.

The Layout Management component contains the LayoutManager itself, as
well as GuiElements and ContentElements. It is responsible for the creation
of GuiLayouts that position these elements on the screen of the displays. Infor-
mation about the displays is provided by the Content Management component
and by the Trust Management component by the SystemActions it proposes.

The Content Management component contains the ContentObserver that
handles all Content changes if they are not trust-critical on the one hand, as well
as the ContentManager that provides all application content on the other hand.
These classes also manage the Metadata and PrivacyInformation attached to
content.

The User Management component handles the Users as well as their corre-
sponding UserProfiles and provides this information to the Interpreter Com-
ponent. This component in turn contains the Interpreter that uses this data
to create the SocialContext. It also handles other Data, for example, to de-
rive the DisplayContext. For this purpose, it uses the Environment Tracking
component that handles Sensors and the Data created by them.

21



Figure 8: Components of a Trusted Display Grid

The Displays themselves have a ContentObserver to react to content
changes directly if possible and to interface with the server's Content Man-
agement component. They can also provide Sensors and Data that are used
in the Interpreter Component to determine the status of the display or of its
surroundings. It also interfaces with User Management if it is a user's personal
display to login and exchange personal information.

6 Discussion and Conclusion

In this report, we introduced three reference architectures for the Trusted En-
ergy Grid (TEG), the Trusted Computing Grid (TCG), and the Trusted Display
Grid (TDG), that can be used as templates for the construction of trustworthy
applications in the �eld of energy management, desktop grid computing, and
multi-user multi-display environments respectively. Since applications in these
system classes have to deal with uncertainty, we presented the reference architec-
tures in the form of a platform-speci�c model that builds upon a target platform,
the Trust-Enabling Multi-Agent System (TEMAS), that facilitates the utiliza-
tion of trust. To this end, it provides an infrastructure that comprises trust
metrics, which are concretized by applications or reference architectures, and
basic trust mechanisms. Furthermore, we outlined three example applications
that demonstrate the usage and instantiation of the given reference architectures
and how trust enables robust and e�cient operations in systems consisting of a
great number of di�erent participants with unknown behavior.

On the basis of the TEG, we showed the application of Autonomous Virtual
Power Plants that divide a power plant landscape into groups of power plants,
and create and adjust schedules of power plants in order to balance energy sup-

22



ply and load in spite of unforeseen supply and load changes at all times. For this
purpose, Autonomous Virtual Power Plants extend the TEG by the concept of
an Autonomous Virtual Power Plant. Since the objective of energy applications
based on the TEG may vary from application to application, only the basic
behavior and properties of prosumers and other generic system participants are
de�ned in the TEG.

As an example based on the TCG, we proposed a grid computing applica-
tion for face recognition that is performed on multiple devices in parallel. As
each application based on the TCG has the aim to solve a computationally
intensive arithmetic problem as fast as possible, in contrast to the TEG, the be-
havior of participants and all necessary concepts can be modeled independently
from a speci�c application. This includes the functionality for the distribution
and acceptance of work units because of uniform submitter and prototypical,
heterogeneous worker behavior. Nevertheless, an application has to concretize
some concepts de�ned by the TCG, including grid jobs, work units, and the
algorithms that, among other things, generate jobs and process the work units.

Regarding the TDG, we presented the Friend Finder as an application based
on a infrastructure of public and private displays allowing the users to locate
friends on an interactive campus map and retrieve directions to them. The
TDG provides mechanisms to protect the users' private data, e.g., their names,
pictures, or locations, by migrating this data in privacy-critical situations from
public to private displays and thus preserves the users' trust in the system.
To recognize privacy-critical situations, the environment is equipped with sen-
sors providing information about the presence of other people. The application
de�nes the system actions used to protect the users' privacy.

The examples showed that the presented reference architectures prove to be
helpful concepts for the creation of systems consisting of multiple interacting
participants in uncertain environments.

Acknowledgment

This research is partly funded by the research unit �OC-Trust� (FOR 1085) of
the German Research Foundation (DFG).

23



References

[1] G. Anders, L. Klejnowski, J.-P. Steghöfer, F. Siefert, and W. Reif. Refer-
ence Architectures for Trustworthy Energy Management and Desktop Grid
Computing Applications. Technical Report 2011-11, Universitätsbibliothek
der Universität Augsburg, Universitätsstr. 22, 86159 Augsburg, 2011.

[2] G. Anders, F. Siefert, N. Msadek, R. Kiefhaber, O. Kosak, W. Reif, and
T. Ungerer. TEMAS � A Trust-Enabling Multi-Agent System for Open
Environments. Technical Report 2013-04, Universitätsbibliothek der Uni-
versität Augsburg, Universitätsstr. 22, 86159 Augsburg, 2013.

[3] G. Anders, F. Siefert, J.-P. Steghöfer, and W. Reif. Trust-Based Scenarios
� Predicting Future Agent Behavior in Open Self-Organizing Systems. In
Proceedings of the 7th International Workshop on Self-Organizing Systems
(IWSOS 2013), May 2013.

[4] G. Anders, F. Siefert, J.-P. Steghöfer, H. Seebach, F. Nafz, and W. Reif.
Structuring and Controlling Distributed Power Sources by Autonomous
Virtual Power Plants. In Proceedings of the Power & Energy Student Sum-
mit 2010 (PESS 2010)), pages 40�42, October 2010.

[5] B. Becker, F. Allerding, U. Reiner, M. Kahl, U. Richter, D. Pathmaperuma,
H. Schmeck, and T. Leibfried. Decentralized Energy-Management to Con-
trol Smart-Home Architectures. Architecture of Computing Systems-ARCS
2010, pages 150�161, 2010.

[6] K. Bee, S. Hammer, C. Pratsch, and E. André. The Automatic Trust
Management of Self-Adaptive Multi-Display Environments. In Trustwor-
thy Ubiquitous Computing, volume 6 of Atlantis Ambient and Pervasive
Intelligence, pages 3�20. Atlantis Press, 2012.

[7] Y. Bernard, L. Klejnowski, J. Hähner, and C. Müller-Schloer. Towards
Trust in Desktop Grid Systems. In Cluster Computing and the Grid, IEEE
International Symposium on, pages 637�642, Los Alamitos, CA, 2010. IEEE
Computer Society.

[8] R. Kiefhaber, B. Satzger, J. Schmitt, M. Roth, and T. Ungerer. The De-
layed Ack Method to Measure Trust in Organic Computing Systems. In
Proceedings of the Trustworthy Self-Organizing System Workshop 2010 at
the Fourth IEEE Conference on Self-Adaptive and Self-Organizing Systems,
pages 27�32. IEEE Computer Society Press, 2010.

[9] R. Kiefhaber, F. Siefert, G. Anders, T. Ungerer, and W. Reif. The Trust-
Enabling Middleware: Introduction and Application. Technical Report
2011-10, Universitätsbibliothek der Universität Augsburg, Universitätsstr.
22, 86159 Augsburg, 2011.

[10] E. Kurdyukova, E. André, and K. Leichtenstern. Trust-centered design for
multi-display applications. In Proceedings of the 8th International Confer-
ence on Advances in Mobile Computing and Multimedia, MoMM '10, pages
415�420, New York, NY, USA, 2010. ACM.

24



[11] E. Kurdyukova, K. Bee, and E. André. Friend or Foe? Relationship-
based Adaptation on Public Displays. In Proceedings of the Second In-
ternational conference on Ambient Intelligence (AmI'11), pages 228�237.
Springer, 2011.

[12] C. Röcker, S. Hinske, and C. Magerkurth. Intelligent Privacy Support
for Large Public Displays. In Proceedings of Human-Computer Interaction
International 2007 (HCII'07), pages 198�207, 2007.

[13] M. Roth, J. Schmitt, R. Kiefhaber, F. Kluge, and T. Ungerer. Organic
Computing Middleware for Ubiquitous Environments. In Organic Com-
puting � A Paradigm Shift for Complex Systems, pages 339�351. Springer
Basel, 2011.

[14] L. Rothrock, R. Koubek, F. Fuchs, M. Haas, and G. Salvendy. Review and
reappraisal of adaptive interfaces: Toward biologically inspired paradigms.
Theoretical Issues in Ergonomics Science, 3(1):47�84, 2002.

[15] N. Ruiz, I. Cobelo, and J. Oyarzabal. A Direct Load Control Model for
Virtual Power Plant Management. IEEE Transactions on Power Systems,
24(2):959�966, 2009.

[16] F. Siefert, G. Anders, M. Sommer, and W. Reif. A Generic Framework for
Simulating the EEX Power Market in Agent-Based Energy Management
Applications. In Tagungsband des Power and Energy Student Summit 2012,
January 2012.

[17] J.-P. Steghöfer, R. Kiefhaber, K. Leichtenstern, Y. Bernard, L. Klejnowski,
W. Reif, T. Ungerer, E. André, J. Hähner, and C. Müller-Schloer. Trustwor-
thy organic computing systems: Challenges and perspectives. In B. Xie,
J. Branke, S. Sadjadi, D. Zhang, and X. Zhou, editors, Autonomic and
Trusted Computing, volume 6407 of Lecture Notes in Computer Science,
pages 62�76. Springer Berlin Heidelberg, 2010.

[18] J.-P. Steghöfer, F. Nafz, W. Reif, Y. Bernard, L. Klejnowski, J. Hähner, and
C. Müller-Schloer. Formal Speci�cation and Analysis of Trusted Commu-
nities. In Proceedings of the Trustworthy Self-Organizing System Workshop
2010 at the Fourth IEEE Conference on Self-Adaptive and Self-Organizing
Systems, pages 33�38. IEEE Computer Society Press, 2010.

25


